
FUW Trends in Science & Technology Journal, www.ftstjournal.com 

e-ISSN: 24085162; p-ISSN: 20485170; April, 2025: Vol. 10 No. 1 pp. 134 – 141  134 

 Analysis Of Forced Transverse Vibration of A Double-Beam System With A Linear 

Pasternak Middle Layer Under A Travelling Distributed Load 

 

Hammed Fatai Akangbe1, Usman Mustapha Adewale1, Adeyemi Ibrahim1 and Ayeni,Sheriffat Taiwo1 

1Department of Mathematical Sciences, Olabisi Onabanjo University, Ago-Iwoye, Nigeria 

Corresponding author email: usman.mustapha@oouagoiwoye.edu.ng 

 

Received:   February 14, 2025,     Accepted: April 28, 2025 

Abstract:  This study explores the compelled oscillation of a double beam structure using the Euler-Bernoulli 

theory. The structure consists of two equivalent, uniform, parallel beam that are simply Supported 

and have a linear Pasternak middle layer. The beams' transverse responses, the coupled dynamic 

equations of motion of the system are simplified using finite Fourier sine integral transform. This 

integral transformation facilitates the decoupling of the equations, resulting in second-order 

differential equations. The differential transform method is subsequently used to simplify these 

equations further and derive the dynamics response equations. The obtained responses were analysed 

using Scilab tools under conditions of moving force for both beams. The impact of the moving load’s 

speed (v), the shear variable (G), and stiffness parameter (k) on the traveling force were studied. 

Ultimately, different values of the travelling load, shear variable, and stiffness parameter were 

analysed through plots. The outcomes reveal that as the traveling load’s speed increments, the 

absolute response magnitude of the deflection of the upper and lower beams increment as well. An 

upsurge in the shear parameter causes a decline in the dynamic amplitude of the upper beam, while 

the opposite is seen for the lower beam. It was noted that an increments in the stiffness parameter 

results to an increment in the dynamic amplitude of the upper beam, while the opposite is noted for 

the lower beam. 

Keywords:  Forced vibration, Euler-Bernoulli beam, Pasternak middle layer, Transverse response, Moving force. 

 

Introduction  

The problem concerning the investigation of vibrational 

modelling of a double beam system under moving 

distributed load is very essential in structural engineering 

application. Double-beam systems are frequently utilized in 

diverse engineering fields, such as construction, bridge 

building, and aerospace structures, where it is crucial to have 

a high load-bearing capacity and stiffness. Double beam 

system can be designed with a longer span than single 

beams, making them suitable for larger structures. Double 

beam systems exhibit more intricate vibrations under 

moving loads than single beam systems, which may be 

linked to the difficulty in solving dynamic motion equations. 

Compared to single-beam systems, the investigation of 

vibrations in double-beam systems is relatively complex, 

which has garnered the attention of only a small group of 

researchers, as noted by Michaltos et al. (1995), Abu-Hilal 

(2006), Li et al. (2015), and Jing et al. (2019). Over time, 

many problems related to this study on the vibrational 

reaction of beams due to travelling loads have been 

examined and explicit solutions have been found. Rajib et al. 

(2012), investigated dynamic reaction of beams upheld by a 

Pasternak substructure and exposed to a mobile load and 

mobile mass. The authors utilized modal analysis in 

conjunction with Fourier transverse techniques to analyze 

the dynamic equations governing the system. The findings 

demonstrated that the modal analysis results were similar to 

those obtained from exact analytical solutions. 

Nasirshoabi and Mohammadi (2015) conducted a study 

focused on analyzing the compelled lateral vibration of a 

double-plate configuration with a flexible Pasternak 

interlayer. The research investigated how the inclusion of the 

Pasternak layer affected the driven vibration of the double-

plate setup, particularly under a specific excitation loading 

condition. The researchers analysed the dynamic behaviour 

of the structure to randomly dispersed moving loads and 

discussed the resulting vibration due to harmonic exciting 

forces. Furthermore, they developed conditions for 

resonance and dynamic vibration absorption through their 

formulation. Li et al. (2016), analysed the dynamic 

characterization of a dual-beam structure linked by a visco-

elastic middle layer. The researchers created a semi-

analytical approach to examine mode shapes and natural 

vibration rate of the dual beam structure with a 

viscoelasticity layer and utilized integral modal analysis 

technique to calculate the beam responses. The authors 

investigated the impact of the viscoelastic layer and found 

that a rise in stiffness caused a reduction in the dynamic 

behavior due to the upper beam while the response 

corresponding to the lower beam increments. A study 

conducted by Koziol and Rafal (2018) on the vibrational 

response of duo-beam model with nonlinearized viscoelastic 

substructure to traveling load. The model is analysed using 

Fourier Analysis and Adomian’s decomposition is adopted, 

together with the wavelet-based approximation of the 

outcome adopting Coiflet filters.  

In their study, hammed et al. (2020), analysed the vibration 

behavior of a double beam structure that is elastically 

restrained at one end under a concentrated travelling mass. 

The focus is on the transverse behaviour of the structure. The 

authors employed a solution approach that involved a 

combination of the modified Struble's method, the series 

variable separable technique, and the differential 

transformation method (DTM). They investigated the impact 

of various mass values of the travelling load, as well as the 
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travelling load’s speed, viscoelasticity and stiffness 

parameters on the responsive behaviour of the beam. The 

study presents and discusses the findings, which reveal that 

the responsive behaviour of the system was significantly 

influenced by these variables. The authors' analysis provides 

valuable insights into the model and analysis of such 

systems, particularly in mechanical engineering. Hammed et 

al. (2020), analyse the reaction of a double-beam model that 

is supported by an elastic Pasternak foundation under a 

dispersed travelling load. The focus is on the forced reaction 

of the system. The authors utilized the Fourier sine integral 

scheme and differential transformation to derive an exact 

solution. Based on the results, it was noted that an upsurge 

in the velocity of the travelling load led to a rise in the 

absolute vibration amplitude of both beams. In addition, the 

authors investigated the impact of other interacting 

parameters such as shear moduli and spring stiffness and 

concluded that these parameters have an important impact 

on the analysis. 

In this study, the foundation linking the double beam is 

defined as a linear Pasternak type layer, where the Winkler 

layer is linear and the Pasternak layer is formulated using of 

linear second partial derivatives. To the best knowledge of 

the author, many researchers have worked on vibrational 

response of a double beam model with a linear and non-

linear Pasternak type layer along the length of the beam 

under a travelling load. The results of this is that the effect 

of traveling distributed load have not been considered. This 

study is original and first attempt to approach the behavior 

of a double beam structure, linked by a linear variable 

Pasternak middle layer to a uniformly distributed traveling 

load using Fourier Integral Sine Transform and Differential 

Transform Method (D.T.M).  

 

Mathematical Model 

The study involves the analysis of a structural system 

consisting of a double Euler-Bernoulli beam system that is 

simply supported and supported elastically. This model 

consists of two uniform, undamped, and finite parallel beams 

with the equal length L and mass per unit length μ. The two 

beams are linked together by a Pasternak middle layer, 

which has a linear variable characteristic. The beams in the 

structural model exhibit linear elastic material behavior, and 

their cross-sections remain rigid and uniform along the entire 

length of the beams, which is confined to a single plane of 

geometry. Although the elastic axial deformations are 

ignored, the shear strain of the cross-section is considered.  

 

 

 

 

 

 

 

 

 

  

  

 

 

 

 

Figure 1: A double-beam system subjected to a moving force. 

 

The model under a dynamic distributed load, denoted as 

Q1(x, t), with a mass of M and a constant velocity of v. The 

vibration responses of the upper beams, denoted as 

U1(x, t)and U2(x, t)respectively, are described by fourth-

order Partial differential dynamic equations. 

The problem under consideration is governed by the 

following equations: 

 

 

EI
∂4U1(x, t)

∂x4
+  μ

∂2U1(x, t)

∂t2
+ G0 [

∂2U1(x, t)

∂x2
−

∂2U2(x, t)

∂x2
] 

                            −K0(1 − αx)[U1(x, t) − U2(x, t)] = Q1(x, t)                                         (1) 

EI
∂4U2(x, t)

∂x4 +  μ
∂2U2(x, t)

∂t2 + G0 [
∂2U2(x, t)

∂x2 −
∂2U1(x, t)

∂x2 ] − K0(1 − αx)[U2(x, t) − U1(x, t)]

= 0                                                     (2) 

 

 

 

where the function defining the dynamic distributed load is given by 

 

Q1(x, t) = −
ρ

ℰ
{

[H (x − ξ +
ℰ

2
) − H (x − ξ −

ℰ

2
)] , for the upper beam,

0,     for the lower beam;                                                     

              (3) 

Where E and I are the elasticity modulus and horizontal inertia moment for the two beams, respectively, and U1(x, 0) and U2(x, 0) 

are the lateral displacement of the two beams, respectively; K0 denotes the stiffness of the Pasternak foundation, G0 is the shear 

modulus of the Pasternak foundation, ρ is the beam material’s density, H is the heaviside function and δ is the dirac delta functions 

at point x = vt.  
Mathematically, the boundary constraints corresponding to equations (1) and (2) can be expressed as: 

                                    U1(0, t) = 0 = U1(L, t)                                                                          (4) 

                                  
∂2U1(0, t)

∂x2 = 0 =
∂2U1(L, t)

∂x2                                                                  (5) 

𝐿 

𝑊𝑖𝑛𝑘𝑙𝑒𝑟 𝑓𝑜𝑢𝑛𝑑𝑎𝑡𝑖𝑜𝑛 
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                                      U2(0, t) = 0 = U2(L, t)                                                                       (6) 

                                 
∂2U2(0, t)

∂x2 = 0 =
∂2U2(L, t)

∂x2  ,                                                                (7) 

and the corresponding initial constraints are: 

                                   U1(x, 0) = 0 =  
∂U1(x, 0)

∂t
                                                                     (8) 

                                     U2(x, 0) = 0 =  
∂U2(x, 0)

∂t
  ,                                                             (9) 

Solution of the Problem 

Finite Fourier Integral Sine Transform 

The initial boundary-value problem outlined in the equations, a solution method needs to be employed in equations (1) - (9), the 

finite integral transform method was employed. This method was chosen due to its suitability in the analysis of moving load, as 

established by previous studies [Gbadeyan and Oni (1995), Usman et al. (2021), Mohammadi and Nasirshoabi (2015), and Hammed 

et al. (2020)]. The unknown transverse responses U1(x, t)and U2(x, t)for the upper and lower beams, respectively, were derived by 

applying the finite Fourier sine transform to equations (1) and (2). Considering the upper beam, equation (1) can be represented 

below: 

 

  EI
∂4U1(x, t)

∂x4 +  μ
∂2U1(x, t)

∂t2 + G0 [
∂2U1(x, t)

∂x2 −
∂2U2(x, t)

∂x2 ] 

     −K0(1 − αx)[U1(x, t) − U2(x, t)] =
Mg

ℰ
[H (x − ξ +

ℰ

2
) − H (x − ξ −

ℰ

2
)]                (10) 

 

 

and equation (10) becomes 

 

  EI
∂4U2(x, t)

∂x4
+  μ

∂2U2(x, t)

∂t2
+ G0 [

∂2U2(x, t)

∂x2
−

∂2U1(x, t)

∂x2
] 

                           −K0(1 − αx)[U2(x, t) − U1(x, t)] = 0 .                                                           (11) 

The finite Fourier sine transform assumed for equations (1) and (2) is defined as: 

       U̅m(n, t) = ∫ Um(x, t)
l

0

sin
nπx

L
dx;         n = 1, 2, 3, … ;       m = 1, 2.                          (12) 

 

The inverse form of equation (12) is 

 

     Um(x, t) =
2

L
∑ U̅m(n, t)

∞

n=1

sin
nπx

L
,     m = 1, 2.                                                               (13) 

Applying equation (12) into individual terms of equation (10), the following expression was obtained 

        EI
n4π4

L4
U̅1(n, t) + μU̅̈1(n, t) + G0

n2π2

L
[U̅2(n, t) − U̅1(n, t)] 

                        +Kn(x)[U̅2(n, t) − U̅1(n, t)] = −2
Mg

nπε
sin2

nπξ

L
sin2

nπε

L
                      (14) 

       EI
n4π4

L4 U̅2(n, t) + μU̅̈2(n, t) + G0

n2π2

L
[U̅1(n, t) − U̅2(n, t)] 

                        − Kn(x)[U̅1(n, t) − U̅2(n, t)] = 0 .                                                              (15) 

 

Simplification of equations (14) and (15) gives  

      U̅̈1(n, t) + ωn
2U̅1(n, t) + αnU̅2(n, t) − αnU̅1(n, t) =

Mg

μ
sin

nπvt

L
                       (16) 

       U̅̈2(n, t) + ωn
2U̅2(n, t) + αnU̅1(n, t) − αnU̅2(n, t) = 0                                            (17) 

 where  

                              αn = G0

n2π2

μL2 +
Kn(x)

μ
                                                                             (18) 

    ωn
2 =

EI

μ

n4π4

L4    ,                                                                                        (19) 

where ωnis the natural angular frequency of the beam. 

It should be noted that equations (16) and (17) represent a simplified version of the dynamic equations that dictate the behavior of 

the beams, as originally expressed in equations (1) and (2). These simplified equations are obtained by performing a finite Fourier 

transformation on the dynamic governing equations of the system. Essentially, the fourth order dynamic equations (1) and (2) are 
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converted to second-order ordinary differential equations (16) and (17). To further simplify equations (16) and (17), the differential 

transformation method is utilized. 

Differential Transform Method 

The differential transform technique, which is built on the 

fundamental principle of transforming differential equations 

into algebraic equations, was employed to analyse the two 

differential equations (16) and (17). The differential 

transformation method is a well-established numerical 

technique that is widely recognized as a powerful and 

efficient tool for solving a wide range of differential 

equations, both uniform and non-uniform, which does not 

exclude partial and ordinary differential equations. The 

method is known for its fast convergence rates, minimal 

computational effort, and low calculation errors, making it a 

valuable tool for various engineering applications. Zhou 

(1986) first introduced the concept of DTM while attempting 

to analyse the initial boundary value problems in engineering 

applications. In the last few years, several researchers have 

employed the differential transformation method (DTM) for 

obtaining a variety of dynamic vibration problems. Raslan et 

al. (2012), investigated comprehensive research on the 

implementation of the differential transform method (DTM) 

for calculating dynamic equations that have variable 

coefficients. Other notable studies on vibration problems of 

moving load structures using DTM include those by Ho and 

Chen (1998), Attarnejad et al. (2017), Gbadeyan and 

Agboola (2012), and Gbadeyan and Hammed (2017). 

Illustrating the basic idea of differential transform, the 

function U̅m(n, t) which is analytic and having a continuous 

derivative in the scope of interest is considered such that  

 

 

     Um(k) =
1

K!
[
dkU̅m(n, t)

dtk
]

x=x0

,                                                                                   (20) 

where the original function is denoted by  U̅m(n, t),while the transformed function is denoted by Um(k). The differential inverse 

transform of Um(k)is expressed as: 

 

                                   U̅m(n, t) = ∑ Um(k)(t − to)k

∞

k=0

    .                                                   (21) 

Taking equations (20) and (21) into consideration, the deduced equation is: 

                                  U̅m(n, t)  = ∑
(t − to)k

k!

dkU̅m(n, t)

dtk
|

t=0

∞

k=0

 .                                      (22) 

when t0 is set to 0, equation 22 gives: 

                                  U̅m(n, t)  = ∑
tK

K!
[
dkU̅m(n, t)

dtk
]

t=0

∞

k=0

    .                                             (23) 

Hence,  

                             U̅m(n, t) = ∑ Um(k)tk

∞

k=0

 .                                                                         (24) 

The primary contrast between the differential transform technique and Taylor's series technique lies in the fact that the latter 

involves the computation of higher-order derivatives, which can be challenging, while the former employs an iterative approach 

that avoids the need for such computations, making it a simpler and more efficient technique for solving differential equations. In 

practical applications, such as the situation at hand, the function U̅m(n, t) is usually a finite series, so that equation (24) can be 

expressed as 

                                     U̅m(n, t) = ∑ Um(k)

N

k=0

tk                                                                   (25) 

Therefore, the term ∑ Um(k)∞
k=N+1 tkis considered to be negligible, and the value of N is obtained in this study based on the 

convergence of vibration frequency.  

Taking the differential transform of equation (16) and (17), the following recurrence equation was obtained: 

 

(k + 2)(k + 1)U1(k + 2) + ωn
2U1(k) + αnU2(k) − αnU1(k)

=
Mg

μ
[

1

k!
(

nπv

k
) sin (

kπ

2
)]                                                                         (26) 

  (k + 2)(k + 1)U2(k + 2) + ωn
2U2(k) + αnU1(k) − αnU2(k) = 0 .                         (27) 

The corresponding recurrence relation of equation (26) and (27) are respectively expressed as,  

 

U1(k + 2) =
1

(k + 2)(k + 1)
[
Mg

μ
[

1

k!
(

nπv

k
) sin (

kπ

2
)] − ωn

2U1(k) − αnU2(k)

+ αnU1(k)]                                                                                                    (28) 
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   U2(k + 2) =
1

(k + 2)(k + 1)
[−ωn

2U2(k) − αnU1(k) + αnU2(k)] .                        (29) 

 

The following initial conditions based on DTM theorems at t = 0 are defined: 

 

                                 Um = (0);            
dUm

dt
= 0; m = 1,2 .                                                 (30) 

 

Thus, the corresponding transformed boundary conditions are, 

 

                                   U1(0) = 0 = U1(1)                                                                               (31) 

                                   U2(0) = 0 = U2(1) .                                                                             (32) 

 

Hence, for k = 0, 1, 2, 3, … in equations (28) and (29) the following results are obtained: 

 

For; k = 0 

                                         U1(2) = 0                                                                                                           (33) 

                                        U2(2) = 0  .                                                                                                         (34) 

 

k = 1 

                                   U1(3) =
1

3!

Mg

μ
(

nπv

L
)                                                                                          (35) 

                                   U2(3) = 0  .                                                                                                               (36) 

 

k = 2 

                                     U1(4) = 0                                                                                                               (37) 

                                     U2(4) = 0  .                                                                                                            (38) 

k = 3 

                       U1(5) =
1

5!

Mg

μ
(

nπv

L
) [(

nπv

L
)

2

+ ωn
2 + αn]                                                          (39) 

                      U2(5) = −
αn

5!

Mg

μ
(

nπv

L
) .                                                                                            (40) 

k = 4 

                                U1(6) = 0                                                                                                               (41) 

                                U2(6) = 0    .                                                                                                           (42) 

k = 5 

U1(7) =
1

7!

Mg

μ
(

nπv

L
) [(

nπv

L
)

4

− ωn
2 ((

nπv

L
)

2

− ωn
2 + αn) + αn

2

+ αn [(
nπv

L
)

2

− ωn
2 + αn]]                                                                                (43) 

U2(7) =
αn

7!

Mg

μ
(

nπv

L
) [ωn

2 − 1 [(
nπv

L
)

2

− ωn
2 + αn] − αn]   .                                             (44) 

The undefined functions U̅m(n, t), m = 1, 2 are then represented as the inverse differential transform given by: 

                      U̅m(n, t) =  ∑ Um(k)t K

N

k=0

 ;          m = 1,2  .                                                           (45) 

substituting equations (33) – (44) respectively into equation (45) yields 

 

U̅1(n, t) =
1

3!

Mg

μ
(

nπv

L
) t3 +

1

5!

Mg

μ
(

nπv

L
) [(

nπv

L
)

2

+ ωn
2 + αn] t5

+
1

7!

Mg

μ
(

nπv

L
) [(

nπv

L
)

4

− ωn
2 ((

nπv

L
)

2

− ωn
2 + αn) + αn

2 + αn [(
nπv

L
)

2

− ωn
2 + αn]] t7

+ ⋯                                                                     (46) 

U̅2(n, t) = −
αn

5!

Mg

μ
(

nπv

L
) t5 +

αn

7!

Mg

μ
(

nπv

L
) [ωn

2 − 1 [(
nπv

L
)

2

− ωn
2 + αn] − αn] t7

+ ⋯   .                                                                                                                         (47) 

Further simplification of equations (46) and (47) yields; 
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U̅1(n, t) =  
Mg

μ
(

nπv

L
) [

t3

3!
+

1

5!
[(

nπv

L
)

2

+ ωn
2 + αn] t5

+
1

7!
[(

nπv

L
)

4

− ωn
2 ((

nπv

L
)

2

− ωn
2 + αn) + αn

2 + αn [(
nπv

L
)

2

− ωn
2 + αn]] t7

+ ⋯ ]                                                                                                                             (48) 

U̅2(n, t) =
Mg

μ
(

nπv

L
) [−

αnt5

5!
+

αn

7!
[ωn

2 − 1 [(
nπv

L
)

2

− ωn
2 + αn] − αn] t7

+ ⋯  ]                                                                                                                        (49) 

respectively. 

plugging equations (48) and (49) into equation (13) for m = 1 and m = 2 yields the following equations: 

U1(x, t) =
2

L
∑

Mg

μ
(

nπv

L
) [

t3

3!
+

1

5!
[(

nπv

L
)

2

+ ωn
2 + αn] t5

∞

n=1

+
1

7!
[(

nπv

L
)

4

− ωn
2 ((

nπv

L
)

2

− ωn
2 + αn) + αn

2 + αn [(
nπv

L
)

2

− ωn
2 + αn]] t7

+ ⋯ ] sin
nπx

L
                                                                                                           (50) 

U2(x, t) =
2

L
∑

Mg

μ
(

nπv

L
) [−

αnt5

5!
+

αn

7!
[ωn

2 − 1 [(
nπv

L
)

2

− ωn
2 + αn] − αn] t7

∞

n=1

+ ⋯  ] sin
nπx

L
                                                                                                            (51) 

respectively. 

Therefore, equations (50) and (51) describe the dynamic behavior of Euler-Bernoulli beams that have a dynamic linear variable 

Pasternak middle layer. The beams in consideration are supported Simply at both ends and exposed to a traveling uniform partially 

distributed load 

 

Results and Discussion 

Numerical Results 

The Pasternak middle layer that supports the two beams can 

have varying properties, as previously mentioned. A uniform 

partial distributed moving force was applied to the beams, 

and to investigate the impact of the layer's shear stiffness and 

other beam parameters, equations (50) and (51) were 

simulated using SCILAB based on the analytical findings. 

These numerical computations were conducted for both 

beams, and values from Abul-Hilal (2006) and adopted by 

Hammed et al. (2020) were utilized for comparison 

purposes. 

μ = 0.075;    EI = 16,000;   g = 10;   L = 6;  ε0 =

0.10, 0.20, 0.30, 0.35; x = 3; k = 10;   π =
22

7
;  t = 0.5. 

 

 

 

 

 

 

 

 

 

 
Figure 2(a): A graph depicting the variation of speed and its 

impact on the upper beam’s deflection. 
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Figure 2(b): A graph illustrating the variation of speed and 

its impact on the lower beam’s deflection. 

 
Figure 3(a): A graph depicting the variation of the shear 

modulus and its impact on the upper beam’s deflection. 

 

 
Figure 3(b): A graph depicting the variation of the shear 

modulus and its impact on the lower beam beam’s 

deflection. 

 

 

 
Figure 4(a): A graph depicting the variation of the stiffness 

parameter and its impact on the upper beam’s deflection. 

 
Figure 4(b): A graph depicting the variation of the stiffness 

parameter and its impact on the lower beam’s deflection. 

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             

Discussion of Results 

The investigation analysed the impact of several parameters, 

such as the velocity of the mobile load, shear modulus 

element, and stiffness parameter, on the responsiveness. The 

individual and coupling impact of these parameters were 

observed and discussed extensively. 

The influence of the traveling load speed on the upper beam 

is depicted in Figure 2(a), where an augmentation in the 

speed shows an increment in the dynamic magnitude of the 

upper beam. On the other hand, an increment in the velocity 

of the traveling load causes an increment in the dynamic 

amplitude of the lower beam, as shown in Figure 2(b). 

Nevertheless, the upper beam exhibits a higher deflection 

than the lower beam. 

The vibrational response of the upper beam with varying 

elastic modulus values is depicted in Figure 3(a). The graph 

indicates that an escalation in the elastic modulus layer value 

causes a reduction in the dynamic amplitude of the upper 

beam. Furthermore, Figure 3(b) exhibits the impact of 

different shear modulus layer values on the lower beam, 

wherein an upsurge in the shear modulus leads to an 

increment in the dynamic magnitude of the lower beam 
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Figure 4(a) displays the absolute response amplitudes 

resulting from variations in the stiffness parameter. It should 

be emphasised that augmenting the stiffness parameter 

values results in an elevation of the dynamic amplitude of 

the upper beam deflection. Figure 4(b) illustrates the impact 

of different stiffness parameter values on the lower beam. It 

can be noted that enhancing the stiffness parameter value 

causes a reduction in the dynamic amplitude of the lower 

beam. 

 

Conclusion 

The study utilized numerical computations to investigate 

how the two beams responded dynamically to the applied 

moving force at different velocities. The results indicated 

that as the velocity of the moving force increased, there was 

a corresponding increase in the deflections of the beams. 

Additionally, the computations were conducted for various 

stiffness parameters, and the outcomes indicated that the 

upper beam’s transverse deformation increased while less 

deflection occurred in the lower beam with an increment in 

the stiffness parameter. Moreover, the numerical findings 

revealed that for varying values of the elastic modulus, an 

increase in the elastic modulus led to a decrement in the 

absolute vibration amplitude of the upper beam, while an 

increment in absolute vibration amplitude of the lower beam 

was observed. 
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